AMB Express (Aug 2022)
Factors affecting the growth, antioxidant potential, and secondary metabolites production in hazel callus cultures
Abstract
Abstract Hazelnut is one of the most important nut plants recently suggested as a sustainable source for paclitaxel. In the present study, the effect of the concentration and combination of PGRs, different basal medium and ultrasonic waves on callus induction and growth, physiological characteristics, and taxol and baccatin III production in hazelnut callus cultures were investigated. The results indicated that combining 2,4-D (2 mg/L) and Kin (0.2 mg/L) with the sonication of explants for 1 min provides an optimized condition for callus induction and growth. Hazelnut explants exhibited different callus production and biochemical and metabolic characteristics depending on the basal medium type, ultrasound treatment, and inclusion of ascorbic acid in the medium. So that, the highest percentage of callogenesis (100%) observed in ½ MS + 1 min US, ½ MS + 150 mg/L AA, B5 + 1 min US and B5 + 150 mg/L AA, and also ½ MS salt + Nitsch vitamins + 150 mg/L AA. Furthermore, the highest callus growth (7.86 g FW) was obtained from ½ MS + 1 min US. The highest amount of baccatin III production (147.98 and 147.85 mg/L) was obtained from the WPM and MS basal media; the highest taxol production (44.89 mg/L) was observed in the WPM basal medium. The cultures in the MS, WPM, and MS salts + Nitsch vitamins media, had the highest H2O2 and MDA content, antioxidant enzymes activity, and phenolic compounds. In conclusion, culture media nutrient composition and concentration not only affect the cell growth and physiological status of the cultures but also improve secondary metabolites production and accumulation.
Keywords