Frontiers in Robotics and AI (Nov 2019)

Integrated Cognitive Architecture for Robot Learning of Action and Language

  • Kazuki Miyazawa,
  • Takato Horii,
  • Tatsuya Aoki,
  • Tatsuya Aoki,
  • Takayuki Nagai,
  • Takayuki Nagai

DOI
https://doi.org/10.3389/frobt.2019.00131
Journal volume & issue
Vol. 6

Abstract

Read online

The manner in which humans learn, plan, and decide actions is a very compelling subject. Moreover, the mechanism behind high-level cognitive functions, such as action planning, language understanding, and logical thinking, has not yet been fully implemented in robotics. In this paper, we propose a framework for the simultaneously comprehension of concepts, actions, and language as a first step toward this goal. This can be achieved by integrating various cognitive modules and leveraging mainly multimodal categorization by using multilayered multimodal latent Dirichlet allocation (mMLDA). The integration of reinforcement learning and mMLDA enables actions based on understanding. Furthermore, the mMLDA, in conjunction with grammar learning and based on the Bayesian hidden Markov model (BHMM), allows the robot to verbalize its own actions and understand user utterances. We verify the potential of the proposed architecture through experiments using a real robot.

Keywords