Applied Sciences (Feb 2025)
Topology Optimization and Testing of Connecting Rod Based on Static and Dynamic Analyses
Abstract
This research article outlines our aim to perform topology optimization (TO) by reducing the mass of the connecting rod of an internal combustion engine based on static structural and dynamic analyses. The basic components of an internal combustion engine like the connecting rods, pistons, crankshaft, and cylinder liners were designed using Autodesk Inventor Professional 2025. Using topology optimization, we aimed to achieve lesser maximum von Mises stress during static structural analysis and maintain a factor of safety (FOS) above 2.5 during rigid body dynamics. A force of 64,500 N was applied at the small end of the connecting rod while the big end was fixed. Topology optimization was carried out using ANSYS Discovery software at various percentages on a trial-and-error basis to determine better topology with lesser maximum von Mises stress. Target reduction was set to 4%, and as a result, 5.66% mass reduction from the original design and 6.25% reduced maximum von Mises stress was achieved. Later, transient analysis was carried out to evaluate the irregular motion loads and moments acting on the connecting rod at 1000 rpm. The results showed that the FOS remained above 2.5. Finally, the optimized connecting rod was simulated and verified for longevity using Goodman fatigue life analysis.
Keywords