Molecules (Apr 2021)

Development of UHPLC/Q-TOF Analysis Method to Screen Glycerin for Direct Detection of Process Contaminants 3-Monochloropropane-1,2-diol Esters (3-MCPDEs) and Glycidyl Esters (GEs)

  • Lauren Girard,
  • Kithsiri Herath,
  • Hernando Escobar,
  • Renate Reimschuessel,
  • Olgica Ceric,
  • Hiranthi Jayasuriya

DOI
https://doi.org/10.3390/molecules26092449
Journal volume & issue
Vol. 26, no. 9
p. 2449

Abstract

Read online

The U.S. Food and Drug Administration’s (FDA′s) Center for Veterinary Medicine (CVM) has been investigating reports of pets becoming ill after consuming jerky pet treats since 2007. Renal failure accounted for 30% of reported cases. Jerky pet treats contain glycerin, which can be made from vegetable oil or as a byproduct of biodiesel production. Glycidyl esters (GEs) and 3-monochloropropanediol esters (3-MCPDEs) are food contaminants that can form in glycerin during the refining process. 3-MCPDEs and GEs pose food safety concerns, as they can release free 3-MCPD and glycidol in vivo. Evidence from studies in animals shows that 3-MCPDEs are potential toxins with kidneys as their main target. As renal failure accounted for 30% of reported pet illnesses after the consumption of jerky pet treats containing glycerin, there is a need to develop a screening method to detect 3-MCPDEs and GEs in glycerin. We describe the development of an ultra-high-pressure liquid chromatography/quadrupole time-of-flight (UHPLC/Q-TOF) method for screening glycerin for MCPDEs and GEs. Glycerin was extracted and directly analyzed without a solid-phase extraction procedure. An exact mass database, developed in-house, of MCPDEs and GEs formed with common fatty acids was used in the screening.

Keywords