Advances in Meteorology (Jan 2018)
An Analysis of Anomalous Winter and Spring Tornado Frequency by Phase of the El Niño/Southern Oscillation, the Global Wind Oscillation, and the Madden-Julian Oscillation
Abstract
Winter and spring tornado activity tends to be heightened during the La Niña phase of the El Niño/Southern Oscillation and suppressed during the El Niño phase. Despite these tendencies, some La Niña seasons have fewer tornadoes than expected and some El Niño seasons have more than expected. To gain insight into such anomalous seasons, the two La Niña winters and springs with the fewest tornadoes and the two El Niño winters and springs with the most tornadoes between 1979 and 2016 are identified and analyzed in this study. The relationships between daily tornado count and the Global Wind Oscillation and Madden-Julian Oscillation in these anomalous seasons are also explored. Lastly, seasonal and daily composites of upper-level flow, low-level flow and humidity, and atmospheric instability are generated to describe the environmental conditions in the anomalous seasons. The results of this study highlight the potential for large numbers of tornadoes to occur in a season if favorable conditions emerge in association with individual synoptic-scale events, even during phases of the El Niño/Southern Oscillation, Global Wind Oscillation, and Madden-Julian Oscillation that seem to be unfavorable for tornadoes. They also highlight the potential for anomalously few tornadoes in a season even when the oscillations are in favorable phases.