Promet (Zagreb) (Aug 2024)
Modelling Passengers’ Travel Behaviour for Shared Autonomous Vehicle and Bus Considering Heterogeneity
Abstract
The popularisation of autonomous vehicles will give rise to a new business model called shared autonomous vehicle (SAV). SAVs may attract a large number of passengers and lead to a decline in the share of buses, which can be interpreted by exploring passengers’ travel behaviour when confronting the SAV and bus modes. Thus, this paper addresses the SAV and bus passengers’ travel behaviour, aiming to examine the factors influencing travel behaviour and revealing the characteristics of SAV passengers. We classified passengers using latent class cluster analysis and modelled passengers’ travel behaviour based on confirmatory factor analysis and mixed logit model. The findings indicate a variation in travel preferences among different classes of travellers. Short-distance travellers pay less attention to travel time. Non-short-distance PT travellers are most likely to be affected by service attributes (waiting time, travel time and travel costs). Non-short-distance private car travellers are more likely to become early SAV adopters. Passengers travelling for short distances may be more likely to choose SAV, which reveals the potential of SAVs to become a first and last mile connection for public transport. Passengers lack trust in SAVs, which will affect their promotion.
Keywords