Currently, FRS and CRS are the two predominant dryland rearing systems in the goose industry. However, the effects of these two systems on goose growth performance and health, as well as the underlying mechanisms, have not been fully clarified. Thus, this study aimed to compare growth performance and immune status, as well as investigate the genome-wide transcriptomic profiles of spleen in geese, between CRS and FRS at 270 d of age. Phenotypically, the body weight and body size traits were higher in geese under FRS, while the weight and organ index of spleen were higher in geese under CRS (p p VEGFA, FGF2, NGF, GPC1, NKX2-5, FGFR1, FGF1, MEIS1, CD36, and PAH. Further analysis demonstrated that geese in CRS could improve their immune ability through the “phenylalanine metabolism” pathway. Our results revealed that the FRS improved growth performance, whereas the CRS improved goose immune function by increasing levels of IL-6 and IgG in serum. Moreover, the phenylalanine metabolism pathway could exert positive effects on immune function of geese under CRS. These results can provide reliable references for understanding how floor and cage rearing systems affect goose growth performance and immune capacity.