Petroleum (Mar 2024)

A new mixed type crack propagation criterion in shale reservoirs

  • Muru Ding,
  • Zhirong Jin,
  • Yanjun Zhang,
  • Jinghong Hu

Journal volume & issue
Vol. 10, no. 1
pp. 85 – 92

Abstract

Read online

Hydraulic fracturing is a mainstream technology for unconventional oil and gas reservoirs development all over the world. How to use this technology to achieve high-level oil and gas resource extraction and how to form complex fracture networks as hydrocarbon transportation channels in tight reservoirs, which depends to a large extent on the interaction between hydraulic and pre-existing cracks. For hydraulic fracturing of fractured reservoirs, the impact of natural fractures, perforation direction, stress disturbances, faults and other influencing factors will produce a mixed Ⅰ&Ⅱ mode hydraulic fracture. To forecast whether hydraulic fractures cross pre-existing fractures, according to elastic mechanics and fracture mechanics, a stress state of cracks under the combination of tensile (Ⅰ) and shear (Ⅱ) is presented. A simple mixed-mode Ⅰ&Ⅱ hydraulic fracture's crossing judgment criterion is established, and the propagation of hydraulic fractures after encountering natural fractures is analyzed. The results show that for a given approaching angle there exists a certain range of stress ratio when crossing occurs. Under high approaching angle and large stress ratio, it is likely that hydraulic cracks will go directly through pre-existing cracks. The reinitiated angle is always controlled within the range of approximately 30° among the main direction of penetration.

Keywords