AIMS Mathematics (Jan 2023)
Standing waves for quasilinear Schrödinger equations involving double exponential growth
Abstract
We will focus on the existence of nontrivial, nonnegative solutions to the following quasilinear Schrödinger equation $ \begin{equation*} \left\lbrace\begin{array}{rcll} -{\rm div} \Big(\log \dfrac{e}{|x|}\nabla u\Big) -{\rm div} \Big(\log \dfrac{e}{|x|}\nabla (u^2)\Big) u \ & = &\ g(x, u), &\ x \in B_1, \\ u \ & = &\ 0, &\ x \in \partial B_1, \end{array}\right. \end{equation*} $ where $ B_1 $ denotes the unit ball centered at the origin in $ \mathbb{R}^2 $ and $ g $ behaves like $ {\rm exp}(e^{s^4}) $ as $ s $ tends to infinity, the growth of the nonlinearity is motivated by a Trudinder-Moser inequality version, which admits double exponential growth. The proof involves a change of variable (a dual approach) combined with the mountain pass theorem.
Keywords