The Planetary Science Journal (Jan 2023)

Io’s Optical Aurorae in Jupiter’s Shadow

  • Carl Schmidt,
  • Mikhail Sharov,
  • Katherine de Kleer,
  • Nick Schneider,
  • Imke de Pater,
  • Phillip H. Phipps,
  • Albert Conrad,
  • Luke Moore,
  • Paul Withers,
  • John Spencer,
  • Jeff Morgenthaler,
  • Ilya Ilyin,
  • Klaus Strassmeier,
  • Christian Veillet,
  • John Hill,
  • Mike Brown

DOI
https://doi.org/10.3847/PSJ/ac85b0
Journal volume & issue
Vol. 4, no. 2
p. 36

Abstract

Read online

Decline and recovery timescales surrounding eclipse are indicative of the controlling physical processes in Io’s atmosphere. Recent studies have established that the majority of Io’s molecular atmosphere, SO _2 and SO, condenses during its passage through Jupiter’s shadow. The eclipse response of Io’s atomic atmosphere is less certain, having been characterized solely by ultraviolet aurorae. Here we explore the response of optical aurorae for the first time. We find oxygen to be indifferent to the changing illumination, with [O i ] brightness merely tracking the plasma density at Io’s position in the torus. In shadow, line ratios confirm sparse SO _2 coverage relative to O, since their collisions would otherwise quench the emission. Io’s sodium aurora mostly disappears in eclipse and e-folding timescales, for decline and recovery differ sharply: ∼10 minutes at ingress and nearly 2 hr at egress. Only ion chemistry can produce such a disparity; Io’s molecular ionosphere is weaker at egress due to rapid recombination. Interruption of a NaCl ^+ photochemical pathway best explains Na behavior surrounding eclipse, implying that the role of electron impact ionization is minor relative to photons. Auroral emission is also evident from potassium, confirming K as the major source of far red emissions seen with spacecraft imaging at Jupiter. In all cases, direct electron impact on atomic gas is sufficient to explain the brightness without invoking significant dissociative excitation of molecules. Surprisingly, the nonresponse of O and rapid depletion of Na is opposite the temporal behavior of their SO _2 and NaCl parent molecules during Io’s eclipse phase.

Keywords