Mathematics and Modeling in Finance (Jul 2024)
Gumbel copula-based reliability assessment to describe the dependence of the multicomponent stress-strength model for Pareto distribution
Abstract
The stress-strength model is a commonly utilized topic in reliability studies. In many reliability analyses involving stress-strength models, it is typically assumed that the stress and strength variables are unrelated. Nevertheless, this assumption is often impractical in real-world scenarios. This research assumes that the strength and stress variables follow the Pareto distribution, and a Gumbel copula is employed to represent their relationship. Additionally, the data is gathered through the Type-I progressively hybrid censoring scheme. The method of maximum likelihood estimation is used for point estimation, while asymptotic and Bootstrap percentile confidence intervals are employed for interval estimation of the unknown parameters and system reliability. Simulation is employed to assess the effectiveness of the suggested estimators. Subsequently, an actual dataset is examined to showcase the practicality of the stress-strength model. Simulation is employed to assess the effectiveness of the suggested estimators. Subsequently, a real dataset is examined to demonstrate the practicality of the stress-strength model.
Keywords