Minerals (Apr 2022)

Prognostic Exploration of U-F-Au-Mo-W Younger Granites for Geochemical Pathfinders, Genetic Affiliations, and Tectonic Setting in El-Erediya-El-Missikat Province, Eastern Desert, Egypt

  • Mahmoud M. Hassaan,
  • Sayed A. Omar,
  • Ahmed E. Khalil,
  • Taher M. Shahin,
  • Islam M. El-Naggar,
  • M. I. Sayyed,
  • Mohamed Y. Hanfi

DOI
https://doi.org/10.3390/min12050518
Journal volume & issue
Vol. 12, no. 5
p. 518

Abstract

Read online

Younger granite bodies form two arches, the western and the eastern (WA, EA), which extend from the south northwards from the Meatique, ophiolitic group-island arc rocks, to the large older granite outcrop to the north. This paper concerns the feasibility of exploration in the El-Erediya-Ria El-Garah-El-Gidami-El-Missikat Y Gr regions. Fieldwork and remote sensing, together with geochemical, petrochemical, and mineralogical studies, are used to show the controlling factors, routes, and the origins of the deposits. Remote sensing is used to delineate the different rock units. Normal and strike–slip NW, NNE faults, veins, fractured ENE shear zones, and alteration zones of magmatic-hydrothermal fluids are discussed. Granites are considered using petrochemical diagrams as resources. These rocks are categorized as syeno- and alkali feldspar granites. Geochemical binary relationships recognized the granites are highly fractionated calc-alkaline-altered Monzo-, syeno-, and alkali feldspar granites formed in the active continental margin. The observed positive Ga vs. Cu, Zn, and Ni correlations are used for epithermal-magmatic-hydrothermal polymetallic veins and mineralized greisen zones. Negative Cu vs. Mo correlation patterns show probable Mo-porphyry deposits in the deeper zones at the contact point between porphyritic perthite and perthite granitic El-Erediya mass. The Zr/Sr between 1.65 to 2.93 plus fluorites in El-Missikat and up to 5.48 plus fluorites in El-Erediya show both U-poor at El-Missikat and U-rich deposits at El-Erediya. The recorded U, Th, Cu, and Pb vertical zoning sequence of deposition differentiates U aureole and deposit zones. The estimated lateral zoning sequences of deposition of these elements define the centers of U deposits. Pathfinders for the deposit of the examined area include the positive Fe2O3 vs. Mg O and Fe2O3 vs. Ca O correlations, and also negative Rb/Sr vs. K/Na and Rb vs. Sr ones, can be applied to future prospecting for similar U-F-Au-W-Mo deposits in the Eastern Desert of Egypt.

Keywords