Antihypertensive and Antioxidant Activity of Chia Protein Techno-Functional Extensive Hydrolysates
Alvaro Villanueva-Lazo,
Sergio Montserrat-de la Paz,
Noelia Maria Rodriguez-Martin,
Francisco Millan,
Cecilio Carrera,
Justo Javier Pedroche,
Maria del Carmen Millan-Linares
Affiliations
Alvaro Villanueva-Lazo
Plant Protein Group, Department of Food and Health, Instituto de la Grasa—CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera Km. 1, 41013 Seville, Spain
Sergio Montserrat-de la Paz
Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Avenida Dotor Fedriani 3, 41071 Seville, Spain
Noelia Maria Rodriguez-Martin
Plant Protein Group, Department of Food and Health, Instituto de la Grasa—CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera Km. 1, 41013 Seville, Spain
Francisco Millan
Plant Protein Group, Department of Food and Health, Instituto de la Grasa—CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera Km. 1, 41013 Seville, Spain
Cecilio Carrera
Department of Chemical Engineering, Universidad de Sevilla, Calle Profesor Garcia Gonzalez 1, 41012 Seville, Spain
Justo Javier Pedroche
Plant Protein Group, Department of Food and Health, Instituto de la Grasa—CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera Km. 1, 41013 Seville, Spain
Maria del Carmen Millan-Linares
Plant Protein Group, Department of Food and Health, Instituto de la Grasa—CSIC, Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera Km. 1, 41013 Seville, Spain
Twelve high-quality chia protein hydrolysates (CPHs) were produced from chia protein isolate (CPI) in a pilot plant of vegetable proteins. To obtain functional hydrolysate, four CPHs were hydrolyzed by the action of Alcalase, an endoprotease, and the other eight CPHs were hydrolyzed by the action of Flavourzyme, an exoprotease. Alcalase-obtained CPHs showed significant antihypertensive properties particularly, the CPH obtained after 15 min of hydrolysis with Alcalase (CPH15A), which showed a 36.2% hydrolysis degree. In addition, CPH15A increased the antioxidant capacity compared to CPI. The CPH15A physicochemical composition was characterized and compared to chia defatted flour (CDF) and CPI, and its techno-functional properties were determined by in vitro experiments through the analysis of its oil absorption capacity, as well as the capacity and stability of foaming and emulsifying, resulting in an emulsifier and stabilizer better than the intact protein. Therefore, the present study revealed that CPH15A has potent antihypertensive and antioxidant properties and can constitute an effective alternative to other plant protein ingredients sources that are being used in the food industry.