Biological Procedures Online (Sep 2024)

Employing Raman Spectroscopy and Machine Learning for the Identification of Breast Cancer

  • Ya Zhang,
  • Zheng Li,
  • Zhongqiang Li,
  • Huaizhi Wang,
  • Dinkar Regmi,
  • Jian Zhang,
  • Jiming Feng,
  • Shaomian Yao,
  • Jian Xu

DOI
https://doi.org/10.1186/s12575-024-00255-0
Journal volume & issue
Vol. 26, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Breast cancer poses a significant health risk to women worldwide, with approximately 30% being diagnosed annually in the United States. The identification of cancerous mammary tissues from non-cancerous ones during surgery is crucial for the complete removal of tumors. Results Our study innovatively utilized machine learning techniques (Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN)) alongside Raman spectroscopy to streamline and hasten the differentiation of normal and late-stage cancerous mammary tissues in mice. The classification accuracy rates achieved by these models were 94.47% for RF, 96.76% for SVM, and 97.58% for CNN, respectively. To our best knowledge, this study was the first effort in comparing the effectiveness of these three machine-learning techniques in classifying breast cancer tissues based on their Raman spectra. Moreover, we innovatively identified specific spectral peaks that contribute to the molecular characteristics of the murine cancerous and non-cancerous tissues. Conclusions Consequently, our integrated approach of machine learning and Raman spectroscopy presents a non-invasive, swift diagnostic tool for breast cancer, offering promising applications in intraoperative settings.

Keywords