Environmental Health (Feb 2021)
A tiered approach to prioritizing registered pesticides for potential cancer hazard evaluations: implications for decision making
Abstract
Abstract Background Over 800 pesticides are registered for use in the United States. Human studies indicate concern that some pesticides currently in use in large quantities may also pose a carcinogenic hazard. Our objective is to identify candidates for future hazard evaluations among pesticides used in high volumes in the United States and also classified as potential carcinogens by U.S. Environmental Protection Agency (USEPA). We also identify data gaps where further research is needed. Methods We used a systematic, two-tiered review approach to prioritize pesticides. First, we identified currently registered pesticides classified by USEPA as “possible”, “suggestive”, or “likely” human carcinogens. Among these, we selected pesticides USEPA has listed as commonly used by volume in at least one sector (agriculture, home and garden, or industry, commercial, and/or government), and those without a published hazard evaluation in the past 5 years. Second, we searched primary literature databases for peer-reviewed human cancer studies reporting pesticide-specific data published since the last USEPA carcinogenicity evaluation for each pesticide, and created evidence maps of the number of studies meeting our criteria for each identified pesticide. No evaluation of study results or risk-of-bias assessments were conducted. Results We identified 18 pesticides meeting our selection criteria, 16 pesticides had information from human cancer studies published after their initial carcinogenicity review. Of these, eight pesticides had at least three studies for one or more cancer sites: carbaryl, dichloropropene, dimethoate, mancozeb, metolachlor, pendimethalin, permethrin, and trifluralin. A major limitation in the literature revealed a shortage of studies reporting risk estimates for individual pesticides, rather pesticides were grouped by chemical class. Conclusions Our scoping report provides a map of the existing literature on real-world exposures and human cancer that has accumulated on pesticides classified as potential carcinogens by USEPA and used in high volumes. We also illustrate that several pesticides which are “data-rich” may warrant updated authoritative hazard evaluations. Our two-tiered approach and utilization of evidence mapping can be used to inform future decision-making to update cancer hazard evaluations.
Keywords