RUDN Journal of Ecology and Life Safety (Dec 2017)

TE MPORARY CHANGES IN POLYARENES CONTENT IN SOILS AND PLANTS UNDER THE INFLUENCE OF COAL MINING

  • E V Yakovleva,
  • D N Gabov,
  • beznosikov@ib komiscr Beznosikov

DOI
https://doi.org/10.22363/2313-2310-2017-25-2-271-293
Journal volume & issue
Vol. 25, no. 2
pp. 271 – 293

Abstract

Read online

Rapid development of the industry causes intensified contamination of the environment with polycyclic aromatic hydrocarbons (PAHs). Tundra ecosystems have high recourse potential but also are characterized by a low resistance to anthropogenic influences. The aim of our research was to study possible use of organogenic soil horizons, plants and lichens to trace temporary changes in PAH content in south tundra communities under the aerotechnogenic pollution. Monitoring of PAH content was conducted in organogenic soil horizons and plants from lower vegetation layer of southern tundra. Soils and plants were sampled both from the вackground site and from the sites established in 0,5; 1 and 1,5 km north-east from the coal mine Vorkutinskaya taking into account the wind rose. The samples were collected at the polluted sites in 2013 and 2015. The model species - lichen Peltigera leucophlebia Nyl., moss Pleurozium schreberi Brid. and dwarf shrub Vaccinium myrtillus L. (leaves). ASE-350 accelerated solvent extraction system (Thermo Fisher Scientific, USA) was used to extract PAHs from plants and soils. PAH content in the sample was determined by HPLC method.13 PAH structures were identified in organogenic horizons, plants and lichens from the sites under study. Coal dust was found to be the main PAH source for soils and plants affected by the mine Vorkutinskaya. Light polyarenes made the greatest contribution to the total PAH content. Their proportion remained stable in time at different distances from the mine indicating the constant nature of the contamination. Decrease of PAH content in plants during the two-year period was caused by decrease of mine effect intensity. Plants responded on changes in PAH streams faster than soil organogenic horizons. So, we suppose that plants can be used as better indicators of environmental changes. The largest level of PAH accumulation was revealed for moss Pleurozium schreberi, which due to its wide spread and active PAH accumulation ability can be used to indicate the contamination level in zones affected by coal mining industry.

Keywords