PLoS ONE (Dec 2010)
TbUNC119 and its binding protein complex are essential for propagation, motility, and morphogenesis of Trypanosoma brucei procyclic form cells.
Abstract
Flagellum-mediated motility of Trypanosoma brucei is considered to be essential for the parasite to complete stage development in the tsetse fly vector, while the mechanism by which flagellum-mediated motility is controlled are not fully understood. We thus compared T. brucei whole gene products (amino acid sequence) with Caenorhabditis elegans UNC (uncoordinated) proteins, in order to find uncharacterized motility-related T. brucei genes. Through in silico analysis, we found 88 gene products which were highly similar to C. elegans UNC proteins and categorized them as TbCEUN (T. brucei gene products which have high similarity to C. elegansUNC proteins). Approximately two thirds of the 88 TbCEUN gene products were kinesin-related molecules. A gene product highly similar to C. elegans UNC119 protein was designated as TbUNC119. RNAi-mediated depletion of TbUNC119 showed no apparent phenotype. However, knock-down analysis of both TbUNC119 and its binding protein (TbUNC119BP) which was found by yeast two-hybrid analysis showed characteristic phenotypes, including reduced motility, morphological change (extended cell shape), and cellular apoptosis. Based on the observed phenotypes, possible function of the TbUNC119 and TbUNC119BP is discussed.