EURASIP Journal on Advances in Signal Processing (Jan 2010)
Maximum-LikelihoodSemiblind Equalization of Doubly Selective Channels Using the EM Algorithm
Abstract
Maximum-likelihood semi-blind joint channel estimation and equalization for doubly selective channels and single-carrier systems is proposed. We model the doubly selective channel as an FIR filter where each filter tap is modeled as a linear combination of basis functions. This channel description is then integrated in an iterative scheme based on the expectation-maximization (EM) principle that converges to the channel description vector estimation. We discuss the selection of the basis functions and compare various functions sets. To alleviate the problem of convergence to a local maximum, we propose an initialization scheme to the EM iterations based on a small number of pilot symbols. We further derive a pilot positioning scheme targeted to reduce the probability of convergence to a local maximum. Our pilot positioning analysis reveals that for high Doppler rates it is better to spread the pilots evenly throughout the data block (and not to group them) even for frequency-selective channels. The resulting equalization algorithm is shown to be superior over previously proposed equalization schemes and to perform in many cases close to the maximum-likelihood equalizer with perfect channel knowledge. Our proposed method is also suitable for coded systems and as a building block for Turbo equalization algorithms.