Complex & Intelligent Systems (Oct 2023)

Dynamic layer-span connecting spiking neural networks with backpropagation training

  • Zijjian Wang,
  • Yuxuan Huang,
  • Yaqin Zhu,
  • Binxing Xu,
  • Long Chen

DOI
https://doi.org/10.1007/s40747-023-01245-7
Journal volume & issue
Vol. 10, no. 2
pp. 1937 – 1952

Abstract

Read online

Abstract Spiking Neural Network (SNN) is one of the mainstream frameworks for brain-like computing and neuromorphic computing, which has the potential to overcome current AI challenges, for example, low-power learning dynamic processes. However, there is still a huge gap in performance between SNN and artificial neural networks (ANN) in traditional supervised learning. One solution for this problem is to propose a better spiking neuron model to improve its memory ability for temporal data. This paper proposed a leaky integrate-and-fire (LIF) neuron model with dynamic postsynaptic potential and a layer-span connecting method for SNN trained using backpropagation. The dynamic postsynaptic potential LIF model allows the neurons dynamically release neurotransmitters in an SNN model, which mimics the activity of biological neurons. The layer-span connecting method enhances the long-distance memory ability of SNN. We also first introduced a cosh-based surrogate gradient for the backpropagation training of SNNs. We compared the SNN with cosh-based surrogate gradient (CSNN), CSNN with dynamic postsynaptic potential (Dyn-CSNN), layer-span connecting CSNN (Las-CSNN), and SNN model with all the proposed methods (DlaCSNN-BP) in three image classification and one text classification datasets. The experimental results exhibited that proposed SNN methods could outperform most of the previously proposed SNNs and ANNs in the same network structure. Among them, the proposed DlaCSNN-BP got the best classification performance. This result indicates that our proposed method can effectively improve the effect of SNN in supervised learning and reduce the gap with deep learning. This work also provides more possibilities for putting SNN into practical application.

Keywords