Current Issues in Molecular Biology (Mar 2023)

Identification of Dietary Bioflavonoids as Potential Inhibitors against KRAS G12D Mutant—Novel Insights from Computer-Aided Drug Discovery

  • Prasanna Srinivasan Ramalingam,
  • Purushothaman Balakrishnan,
  • Senthilnathan Rajendran,
  • Arunachalam Jothi,
  • Rajasekaran Ramalingam,
  • Sivakumar Arumugam

DOI
https://doi.org/10.3390/cimb45030137
Journal volume & issue
Vol. 45, no. 3
pp. 2136 – 2156

Abstract

Read online

The KRAS G12D mutation is very frequent in many cancers, such as pancreatic, colon and lung, and has remained undruggable for the past three decades, due to its smooth surface and lack of suitable pockets. Recent small pieces of evidence suggest that targeting the switch I/II of KRAS G12D mutant could be an efficient strategy. Therefore, in the present study, we targeted the switch I (residues 25–40) and switch II (residues 57–76) regions of KRAS G12D with dietary bioflavonoids in comparison with the reference KRAS SI/II inhibitor BI-2852. Initially, we screened 925 bioflavonoids based on drug-likeness properties, and ADME properties and selected 514 bioflavonoids for further studies. Molecular docking resulted in four lead bioflavonoids, namely 5-Dehydroxyparatocarpin K (L1), Carpachromene (L2), Sanggenone H (L3), and Kuwanol C (L4) with binding affinities of 8.8 Kcal/mol, 8.64 Kcal/mol, 8.62 Kcal/mol, and 8.58 Kcal/mol, respectively, in comparison with BI-2852 (−8.59 Kcal/mol). Further steered-molecular dynamics, molecular-dynamics simulation, toxicity, and in silico cancer-cell-line cytotoxicity predictions significantly support these four lead bioflavonoids as potential inhibitors of KRAS G12D SI/SII inhibitors. We finally conclude that these four bioflavonoids have potential inhibitory activity against the KRAS G12D mutant, and are further to be studied in vitro and in vivo, to evaluate their therapeutic potential and the utility of these compounds against KRAS G12D mutated cancers.

Keywords