PLoS ONE (Jan 2018)
Gluteal muscle damage leads to higher in vivo hip joint loads 3 months after total hip arthroplasty.
Abstract
Total hip arthroplasty (THA) is in most cases improving patients´ life quality immediately after surgery. However, a closer look at these patients, especially with modern gait analysis methods, reveals also negative consequences due to the surgical approach related injury to the pelvic muscles. We hypothesized that this damage will have a negative impact on hip joint contact forces during activities of daily living (ADL).10 patients undergoing THA received an instrumented hip joint implant enabling real time in vivo measurements of hip joint loads using a direct lateral approach. Pre- and 3 months postoperative computed tomography (CT) scans were used for evaluation of the periarticular muscle status, using muscle volume, fat ratio and lean muscle volume as parameters. An analysis of in vivo hip contact forces was made 3 months after THA during ADL (walking, stair climbing, chair rising and sitting) and correlated with the morphology of the periarticular muscles.We found a significant decrease of volume by 25% (-3 to -45, p = 0.005) and increase in fat ratio of the Gluteus Minimus (Gmin), resulting in a decrease in lean muscle volume of 28% (-48 to 0, p = 0.008). This was accompanied by an inverse development in the Tensor Fasciae Latae (TFL) resulting in a lean muscle volume increase of 34% (-2 to -102, p = 0.013). Changes in Gluteus Medius (Gmed) and Gluteus Maximus (Gmax) have not been observed in the short-term follow up. A decreased Gmin lean muscle volume was found to strongly correlate with high in vivo joint contact forces in all tested ADL.The decrease of Gmin volume can be seen as a direct effect of THA surgery, whereas the increase of TFL might compensate for loss of Gmin volume. Lean muscle volume and fat ratio were better predictors for joint contact forces than total muscle volume. These effects were most pronounced during sitting down and standing up due to the higher demand on the gluteal muscles during these activities.