Immunity, Inflammation and Disease (Sep 2023)
Interaction among inflammasome, PANoptosise, and innate immune cells in infection of influenza virus: Updated review
Abstract
Abstract Background Influenza virus (IV) is a leading cause of respiratory tract infections, eliciting responses from key innate immune cells such as Macrophages (MQs), Neutrophils, and Dendritic Cells (DCs). These cells employ diverse mechanisms to combat IV, with Inflammasomes playing a pivotal role in viral infection control. Cellular death mechanisms, including Pyroptosis, Apoptosis, and Necroptosis (collectively called PANoptosis), significantly contribute to the innate immune response. Methods In this updated review, we delve into the intricate relationship between PANoptosis and Inflammasomes within innate immune cells (MQs, Neutrophils, and DCs) during IV infections. We explore the strategies employed by IV to evade these immune defenses and the consequences of unchecked PANoptosis and inflammasome activation, including the potential development of severe complications such as cytokine storms and tissue damage. Results Our analysis underscores the interplay between PANoptosis and Inflammasomes as a critical aspect of the innate immune response against IV. We provide insights into IV's various mechanisms to subvert these immune pathways and highlight the importance of understanding these interactions to develop effective antiviral medications. Conclusion A comprehensive understanding of the dynamic interactions between PANoptosis, Inflammasomes, and IV is essential for advancing our knowledge of innate immune responses to viral infections. This knowledge will be invaluable in developing targeted antiviral therapies to combat IV and mitigate potential complications, including cytokine storms and tissue damage.
Keywords