IEEE Photonics Journal (Jan 2020)

Demonstration of a 2.34 Gbit/s Real-Time Single Silicon-Substrate Blue LED-Based Underwater VLC System

  • Ming Chen,
  • Peng Zou,
  • Long Zhang,
  • Nan Chi

DOI
https://doi.org/10.1109/JPHOT.2019.2958969
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

We develop a real-time discrete multi-tone (DMT) transceiver based on field programmable gate array (FPGA) chips for a single chip silicon-substrate light-emitting diode (LED) based underwater visible light communication (UVLC). On-chip resource usages are analyzed and discussed. To improve bit error rate (BER) performance, a novel channel estimation technique utilizing hybrid inter-symbol frequency-averaging (Inter-SFA) and intra-symbol frequency-averaging (Intra-SFA) is proposed and investigated. The real-time DMT transceiver is experimentally verified in a silicon substrate blue LED-based UVLC system with a 1.2 m underwater link. By using the enhanced channel estimation, a gross bit rate of 2.34 Gbit/s real-time DMT signal over 1.2 m underwater transmission can be achieved with the BER of 3.5 × 10-3. What's more, multiple-symbol interleaved Reed-Solomon (RS) codes are employed to further improve BER performance. The real-time measured post-FEC BER of the DMT-UVLC with multiple-symbol interleaved RS (255, 191) codes can be improved by more than six orders of magnitude. As a result, error-free (less than 1 × 10-9) transmission is observed in our real-time experiment. Furthermore, 1.485 Gbit/s 720p high-definition video underwater transmission is successfully demonstrated. To the best of our knowledge, it is the first time to demonstrate a real-time LED-based UVLC system with DMT modulation beyond Gbit/s.

Keywords