Redox Biology (Nov 2024)
Monoamine oxidases: A missing link between mitochondria and inflammation in chronic diseases ?
Abstract
The role of mitochondria spans from the regulation of the oxidative phosphorylation, cell metabolism and survival/death pathways to a more recently identified function in chronic inflammation. In stress situations, mitochondria release some pro-inflammatory mediators such as ATP, cardiolipin, reactive oxygen species (ROS) or mitochondrial DNA, that are believed to participate in chronic diseases and aging. These mitochondrial Damage-Associated Molecular Patterns (mito-DAMPs) can modulate specific receptors among which TLR9, NLRP3 and cGAS-STING, triggering immune cells activation and sterile inflammation. In order to counter the development of chronic diseases, a better understanding of the underlying mechanisms of low grade inflammation induced by mito-DAMPs is needed. In this context, monoamine oxidases (MAO), the mitochondrial enzymes that degrade catecholamines and serotonin, have recently emerged as potent regulators of chronic inflammation in obesity-related disorders, cardiac diseases, cancer, rheumatoid arthritis and pulmonary diseases. The role of these enzymes in inflammation embraces their action in both immune and non-immune cells, where they regulate monoamines levels and generate toxic ROS and aldehydes, as by-products of enzymatic reaction. Here, we discuss the more recent advances on the role and mechanisms of action of MAOs in chronic inflammatory diseases.