Symmetry (Feb 2019)

Continuous Wavelet Transform of Schwartz Tempered Distributions in <i>S</i>′ (<inline-formula> <mml:math id="mm999" display="block"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi mathvariant="double-struck">R</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>)

  • Jagdish Narayan Pandey,
  • Jay Singh Maurya,
  • Santosh Kumar Upadhyay,
  • Hari Mohan Srivastava

DOI
https://doi.org/10.3390/sym11020235
Journal volume & issue
Vol. 11, no. 2
p. 235

Abstract

Read online

In this paper, we define a continuous wavelet transform of a Schwartz tempered distribution f ∈ S ′ ( R n ) with wavelet kernel ψ ∈ S ( R n ) and derive the corresponding wavelet inversion formula interpreting convergence in the weak topology of S ′ ( R n ) . It turns out that the wavelet transform of a constant distribution is zero and our wavelet inversion formula is not true for constant distribution, but it is true for a non-constant distribution which is not equal to the sum of a non-constant distribution with a non-zero constant distribution.

Keywords