Abstract and Applied Analysis (Jan 2014)
Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
Abstract
We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities D2k(n)=(1/4)σ2k+1,0(n;2)-2·42kσ2k+1(n/4) -(1/2)[∑d|n,d≡1 (4){E2k(d)+E2k(d-1)}+22k∑d|n,d≡1 (2)E2k((d+(-1)(d-1)/2)/2)], U2k(p,q)=22k-2[-((p+q)/2)E2k((p+q)/2+1)+((q-p)/2)E2k((q-p)/2)-E2k((p+1)/2)-E2k((q+1)/2)+E2k+1((p+q)/2 +1)-E2k+1((q-p)/2)], and F2k(n)=(1/2){σ2k+1†(n)-σ2k†(n)}. As applications of these identities, we give several concrete interpretations in terms of the procedural modelling method.