Chemistry Central Journal (Jul 2009)

Chemiluminescence determination of surfactant Triton X-100 in environmental water with luminol-hydrogen peroxide system

  • Qiu Chaokun,
  • Zhou Baohui,
  • Li Aifang,
  • Liu Xiaoyu,
  • Ren Hongmin

DOI
https://doi.org/10.1186/1752-153X-3-7
Journal volume & issue
Vol. 3, no. 1
p. 7

Abstract

Read online

Abstract Background The rapid, simple determination of surfactants in environmental samples is essential because of the extensive use and its potential as contaminants. We describe a simple, rapid chemiluminescence method for the direct determination of the non-ionic surfactant Triton X-100 (polyethylene glycol tert-octylphenyl ether) in environmental water samples. The optimized experimental conditions were selected, and the mechanism of the Luminol-H2O2-Triton X-100 chemiluminesence system was also studied. Results The novel chemiluminescence method for the determination of non-ionic surfactant Triton X-100 was based on the phenomenon that Triton X-100 greatly enhanced the CL signal of the luminol-H2O2 system. The alkaline medium of luminol and the pH value obviously affected the results. Luminol concentration and hydrogen peroxide concentration also affected the results. The optimal conditions were: Na2CO3 being the medium, pH value 12.5, luminol concentration 1.0 × 10-4 mol L-1, H2O2 concentration 0.4 mol L-1. The possible mechanism was studied and proposed. Conclusion Under the optimal conditions, the standard curve was drawn up and quotas were evaluated. The linear range was 2 × 10-4 g·mL-1-4 × 10-2 g·mL-1 (w/v), and the detection limit was 3.97 × 10-5 g·mL-1 Triton X-100 (w/v). The relative standard deviation was less than 4.73% for 2 × 10-2 g·mL-1 (w/v) Triton X-100 (n = 7). This method has been applied to the determination of Triton X-100 in environmental water samples. The desirable recovery ratio was between 96%–102% and the relative standard deviation was 2.5%–3.3%. The luminescence mechanism was also discussed in detail based on the fluorescence spectrum and the kinetic curve, and demonstrated that Triton X-100-luminol-H2O2 was a rapid reaction.