Fractal and Fractional (Jan 2022)
A New Approach to Fractional Kinetic Evolutions
Abstract
Kinetic equations describe the limiting deterministic evolution of properly scaled systems of interacting particles. A rather universal extension of the classical evolutions, that aims to take into account the effects of memory, suggests the generalization of these evolutions obtained by changing the standard time derivative with a fractional one. In the present paper, extending some previous notes of the authors related to models with a finite state space, we develop systematically the idea of CTRW (continuous time random walk) modelling of the Markovian evolution of interacting particle systems, which leads to a more nontrivial class of fractional kinetic measure-valued evolutions, with the mixed fractional order derivatives varying with the change of the state of the particle system, and with variational derivatives with respect to the measure variable. We rigorously justify the limiting procedure, prove the well-posedness of the new equations, and present a probabilistic formula for their solutions. As the most basic examples we present the fractional versions of the Smoluchovski coagulation and Boltzmann collision models.
Keywords