Arabian Journal of Chemistry (Oct 2020)

Efficiency of Acacia Gummifera powder as biosorbent for simultaneous decontamination of water polluted with metals

  • Bassem Jamoussi,
  • Radhouane Chakroun,
  • Cherif Jablaoui,
  • Larbi Rhazi

Journal volume & issue
Vol. 13, no. 10
pp. 7459 – 7481

Abstract

Read online

Biosorbent materials represent an interesting alternative to classic methods of metal removal from industrial effluents. Acacia biomass showed a higher absorption capacity for heavy metals than living biomass. This study aimed to evaluate the bioadsorption of Lead and Cadmium onto Acacia Gummifera gum, using batch experiment. The structural characterization of the biosorbent was carried out using FT-IR, SEM, BET, TGA and DSC analysis. The adsorption equilibrium was reached within 15 min. A maximum uptake of 18.3 mg.g−1 Pb2+ and 9.57 mg.g−1 Cd2+ was achieved at pH 6.5. The metal ions seemed to be removed exclusively by ion exchange, physical sorption and chelation. The biomass of A. Gummifera powder was found to be effective for lead and cadmium removal with respectively 97% and 86% sorption efficiency at a concentration of 100 mg/L, in aqueous media. Parameters affecting adsorption capacities such as biosorbent dosage, initial metal concentration, temperature, and pH are discussed in detail. Furthermore, adsorption thermodynamics, kinetics, and equilibrium were studied and fitted by different models. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms were used to compare adsorption data at equilibrium. The adsorption kinetics data were found to be best fitted by the pseudo-second-order model, and the adsorption isotherm was well fitted with the Langmuir model. The calculated thermodynamic parameters (ΔG0, ΔS0 and ΔH0) indicated a spontaneous and exothermic biosorption of both metal ions onto Acacia Gummifera. Moreover, chromatograms obtained by size exclusion chromatography coupled with multi-angle laser light scattering detection system (SECMALLS) showed the formation of complexes between the arabinogalactan-peptide (AGP) and glycoprotein (GP) Acacia moieties and the two studied metal ions. The analysis of the FTIR spectra of dried Acacia and that of Acacia loaded with lead and cadmium in aqueous media suggests that the surface functional groups such as amides and carboxy groups might be involved in the metal removal process.The extent of adsorption for both metals increased along with an increase of the A. Gummifera biomass dosage. A. Gummifera biomass, which is safe, of low-cost, and highly selective, seems therefore to be a promising substrate for simultaneous trapping of Pd and Cd ions in aqueous solutions.

Keywords