Application of Optimal Control Theory to Fourier Transform Ion Cyclotron Resonance
Vardan Martikyan,
Camille Beluffi,
Steffen J. Glaser,
Marc-André Delsuc,
Dominique Sugny
Affiliations
Vardan Martikyan
Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université Bourgogne-Franche Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon, France
Camille Beluffi
CASC4DE S.A.S, Pole API Batiment 1, 300 Boulevard Sébastien Brant, 67400 Illkirch, France
Steffen J. Glaser
Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
Marc-André Delsuc
CASC4DE S.A.S, Pole API Batiment 1, 300 Boulevard Sébastien Brant, 67400 Illkirch, France
Dominique Sugny
Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université Bourgogne-Franche Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon, France
We study the application of Optimal Control Theory to Ion Cyclotron Resonance. We test the validity and the efficiency of this approach for the robust excitation of an ensemble of ions with a wide range of cyclotron frequencies. Optimal analytical solutions are derived in the case without any pulse constraint. A gradient-based numerical optimization algorithm is proposed to take into account limitation in the control intensity. The efficiency of optimal pulses is investigated as a function of control time, maximum amplitude and range of excited frequencies. A comparison with adiabatic and SWIFT pulses is done. On the basis of recent results in Nuclear Magnetic Resonance, this study highlights the potential usefulness of optimal control in Ion Cyclotron Resonance.