Applied Surface Science Advances (Aug 2024)

Nitrogen-functionalized catalyst synthesized using spent coffee ground biochar-cobalt hybrid for oxygen reduction reaction via pyrolysis and ball-milling

  • Mohamad Ayoub,
  • Abdul Hai Alami,
  • Mohammad Ali Abdelkareem,
  • A.G. Olabi

Journal volume & issue
Vol. 22
p. 100614

Abstract

Read online

In this work, oxygen reduction reaction (ORR) catalysts were developed from a precursor of spent coffee ground-based biochar. Nitrogen doping was achieved via urea addition preceding a pyrolysis synthesis process, yielding nitrogen-doped biochar (NDB). Cobalt was deposited onto the NDB surface using a non-conventional ball-milling procedure. The microstructure of the synthesized samples was studied through Scanning Electron Microscopy (SEM), where a rather distorted surface, highlighted by prominent wrinkles (which doubled the surface area at 50.58 m2/g), was shown for nitrogen-doped samples. Moreover, the high energy ball-milling technique shows an almost perfect coverage of cobalt nanoparticles on the biochar surface through SEM/EDS and Raman results. Additionally, electrochemical testing was conducted using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry measurements conducted under nitrogen (inert) and oxygen-saturated alkaline solution (0.1 M KOH) conditions showed that nitrogen doping enhances the oxygen reduction reaction current (-1 vs -0.59 mA.cm−1 at -0.3 V vs Hg/HgO) and slightly reduces the onset potential compared to pristine biochar. Depositing cobalt onto the NDB surface had a minor adverse effect on the onset potential, but significantly increased the oxygen reduction reaction current, reaching a value of -2.09 mA.cm−2 at -0.3 V vs Hg/HgO. All catalysts were compared to a commercial carbon supported platinum catalyst (Pt10%C) to showcase the potential room of improvement for the developed catalysts.

Keywords