Nanomaterials (Oct 2017)

Enhanced UV-Visible Light Photocatalytic Activity by Constructing Appropriate Heterostructures between Mesopore TiO2 Nanospheres and Sn3O4 Nanoparticles

  • Jianling Hu,
  • Jianhai Tu,
  • Xingyang Li,
  • Ziya Wang,
  • Yan Li,
  • Quanshui Li,
  • Fengping Wang

DOI
https://doi.org/10.3390/nano7100336
Journal volume & issue
Vol. 7, no. 10
p. 336

Abstract

Read online

Novel TiO2/Sn3O4 heterostructure photocatalysts were ingeniously synthesized via a scalable two-step method. The impressive photocatalytic abilities of the TiO2/Sn3O4 sphere nanocomposites were validated by the degradation test of methyl orange and •OH trapping photoluminescence experiments under ultraviolet (UV) and visible light irradiation, respectively. Especially under the visible light, the TiO2/Sn3O4 nanocomposites demonstrated a superb photocatalytic activity, with 81.2% of methyl orange (MO) decomposed at 30 min after irradiation, which greatly exceeded that of the P25 (13.4%), TiO2 (0.5%) and pure Sn3O4 (59.1%) nanostructures. This enhanced photocatalytic performance could be attributed to the mesopore induced by the monodispersed TiO2 cores that supply sufficient surface areas and accessibility to reactant molecules. This exquisite hetero-architecture facilitates extended UV-visible absorption and efficient photoexcited charge carrier separation.

Keywords