BMC Genomics (Aug 2024)

Genome-wide investigation of the nuclear factor Y gene family in Ginger (Zingiber officinale Roscoe): evolution and expression profiling during development and abiotic stresses

  • Hong-Lei Li,
  • Xiaoli Wu,
  • Min Gong,
  • Maoqin Xia,
  • Wenlin Zhang,
  • Zhiduan Chen,
  • Hai-Tao Xing

DOI
https://doi.org/10.1186/s12864-024-10588-5
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Nuclear factor Y (NF-Y) plays a vital role in numerous biological processes as well as responses to biotic and abiotic stresses. However, its function in ginger (Zingiber officinale Roscoe), a significant medicinal and dietary vegetable, remains largely unexplored. Although the NF-Y family has been thoroughly identified in many plant species, and the function of individual NF-Y TFs has been characterized, there is a paucity of knowledge concerning this family in ginger. Methods We identified the largest number of NF-Y genes in the ginger genome using two BLASTP methods as part of our ginger genome research project. The conserved motifs of NF-Y proteins were analyzed through this process. To examine gene duplication events, we employed the Multiple Collinearity Scan toolkit (MCScanX). Syntenic relationships of NF-Y genes were mapped using the Dual Synteny Plotter software. Multiple sequence alignments were performed with MUSCLE under default parameters, and the resulting alignments were used to generate a maximum likelihood (ML) phylogenetic tree with the MEGA X program. RNA-seq analysis was conducted on collected samples, and statistical analyses were performed using Sigma Plot v14.0 (SYSTAT Software, USA). Results In this study, the ginger genome was utilized to identify 36 NF-Y genes (10 ZoNF-YAs, 16 ZoNF-YBs, and 10 ZoNF-YCs), which were renamed based on their chromosomal distribution. Ten distinct motifs were identified within the ZoNF-Y genes, with certain unique motifs being vital for gene function. By analyzing their chromosomal location, gene structure, conserved protein motifs, and gene duplication events, we gained a deeper understanding of the evolutionary characteristics of these ZoNF-Y genes. Detailed analysis of ZoNF-Y gene expression patterns across various tissues, performed through RNA-seq and qRT-PCR, revealed their significant role in regulating ginger rhizome and flower growth and development. Additionally, we identified the ZoNF-Y family genes that responded to abiotic stresses. Conclusion This study represents the first identification of the ZoNF-Y family in ginger. Our findings contribute to research on evolutionary characteristics and provide a better understanding of the molecular basis for development and abiotic stress response. Furthermore, it lays the foundation for further functional characterization of ZoNF-Y genes with an aim of ginger crop improvement.

Keywords