Journal of Biomedical Semantics (Dec 2021)

Residual refinement for interactive skin lesion segmentation

  • Dalei Jiang,
  • Yin Wang,
  • Feng Zhou,
  • Hongtao Ma,
  • Wenting Zhang,
  • Weijia Fang,
  • Peng Zhao,
  • Zhou Tong

DOI
https://doi.org/10.1186/s13326-021-00255-z
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Image segmentation is a difficult and classic problem. It has a wide range of applications, one of which is skin lesion segmentation. Numerous researchers have made great efforts to tackle the problem, yet there is still no universal method in various application domains. Results We propose a novel approach that combines a deep convolutional neural network with a grabcut-like user interaction to tackle the interactive skin lesion segmentation problem. Slightly deviating from grabcut user interaction, our method uses boxes and clicks. In addition, contrary to existing interactive segmentation algorithms that combine the initial segmentation task with the following refinement task, we explicitly separate these tasks by designing individual sub-networks. One network is SBox-Net, and the other is Click-Net. SBox-Net is a full-fledged segmentation network that is built upon a pre-trained, state-of-the-art segmentation model, while Click-Net is a simple yet powerful network that combines feature maps extracted from SBox-Net and user clicks to residually refine the mistakes made by SBox-Net. Extensive experiments on two public datasets, PH2 and ISIC, confirm the effectiveness of our approach. Conclusions We present an interactive two-stage pipeline method for skin lesion segmentation, which was demonstrated to be effective in comprehensive experiments.

Keywords