Electronic Journal of Qualitative Theory of Differential Equations (May 2021)

Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity

  • Shao-Yuan Huang,
  • Min-Shu Hwang

DOI
https://doi.org/10.14232/ejqtde.2021.1.41
Journal volume & issue
Vol. 2021, no. 41
pp. 1 – 29

Abstract

Read online

In this paper, we study the shape of bifurcation curve $S_{L}$ of positive solutions for the Minkowski-curvature problem \begin{equation*} \begin{cases} -\left( \dfrac{u^{\prime }(x)}{\sqrt{1-\left( {u^{\prime }(x)}\right) ^{2}}} \right) ^{\prime }=\lambda \left( -\varepsilon u^{3}+u^{2}+u+1\right) ,& -L0$ are bifurcation parameters and $L>0$ is an evolution parameter. We prove that there exists $\varepsilon _{0}>0$ such that the bifurcation curve $S_{L}$ is monotone increasing for all $L>0$ if $ \varepsilon \geq \varepsilon _{0}$, and the bifurcation curve $S_{L}$ is from monotone increasing to S-shaped for varying $L>0$ if $0<\varepsilon <\varepsilon _{0}.$

Keywords