Neural Regeneration Research (Jan 2021)

Lineage tracing of direct astrocyte-to-neuron conversion in the mouse cortex

  • Zongqin Xiang,
  • Liang Xu,
  • Minhui Liu,
  • Qingsong Wang,
  • Wen Li,
  • Wenliang Lei,
  • Gong Chen

DOI
https://doi.org/10.4103/1673-5374.295925
Journal volume & issue
Vol. 16, no. 4
pp. 750 – 756

Abstract

Read online

Regenerating functional new neurons in the adult mammalian central nervous system has been proven to be very challenging due to the inability of neurons to divide and repopulate themselves after neuronal loss. Glial cells, on the other hand, can divide and repopulate themselves under injury or diseased conditions. We have previously reported that ectopic expression of NeuroD1 in dividing glial cells can directly convert them into neurons. Here, using astrocytic lineage-tracing reporter mice (Aldh1l1-CreERT2 mice crossing with Ai14 mice), we demonstrate that lineage-traced astrocytes can be successfully converted into NeuN-positive neurons after expressing NeuroD1 through adeno-associated viruses. Retroviral expression of NeuroD1 further confirms that dividing glial cells can be converted into neurons. Importantly, we demonstrate that for in vivo cell conversion study, using a safe level of adeno-associated virus dosage (1010–1012 gc/mL, 1 µL) in the rodent brain is critical to avoid artifacts caused by toxic dosage, such as that used in a recent bioRxiv study (2 × 1013 gc/mL, 1 µL, mouse cortex). For therapeutic purpose under injury or diseased conditions, or for non-human primate studies, adeno-associated virus dosage needs to be optimized through a series of dose-finding experiments. Moreover, for future in vivo glia-to-neuron conversion studies, we recommend that the adeno-associated virus results are further verified with retroviruses that mainly express transgenes in dividing glial cells in order to draw solid conclusions. The study was approved by the Laboratory Animal Ethics Committee of Jinan University, China (approval No. IACUC-20180330-06) on March 30, 2018.

Keywords