Nature Environment and Pollution Technology (Dec 2023)

Biodiesel from Dunaliella salina Microalgae Using Base Catalyzed Transesterification – An Assessment through GC/MS, FTIR and NMR Studies

  • V. Hariram, M. Janarthanan, R. Christu Paul, A. Sivasankar, M. Wasim Akram, E. Sangeethkumar, V. Ramanathan, P. Sajid Khan and S. Manikanta Reddy

DOI
https://doi.org/10.46488/NEPT.2023.v22i04.021
Journal volume & issue
Vol. 22, no. 4
pp. 1951 – 1960

Abstract

Read online

Algal biofuels are a promising renewable feedstock to produce energy that can supplement future energy demands greatly. The present study aims to utilize Dunaliella salina, a hypersaline, unicellular greenish-orange micro-algae, to produce bio-oil. F/2 nutrient media and trace metal and vitamin solution under carbon-dioxide-rich conditions were used to cultivate the microalgae. Ultrasonic extraction method at 60 Hz for 90 min isolated 650 mL of bio-oil. A single-stage based-catalyzed transesterification process with methanol and sodium hydroxide yielded 380 mL of Pure Dunaliella salina biodiesel at % an extraction efficiency of 87%. The Phytochemical screening on the cultivated Dunaliella sp. was performed to understand its feasibility to be used as a fuel for IC engines. Furthermore, the obtained biodiesel was characterized using Fourier Transform Infrared Spectrometer (FTIR), Gas Chromatography Mass Spectrometer (GCMS), and Nuclear Magnetic Resonance (NMR) spectral analysis.

Keywords