Nonlinear Analysis (Sep 2019)
Spectrum curves for a discrete Sturm–Liouville problem with one integral boundary condition
Abstract
This paper presents new results on the spectrum on complex plane for discrete Sturm–Liouville problem with one integral type nonlocal boundary condition depending on three parameters: γ, ξ1 and ξ2. The integral condition is approximated by the trapezoidal rule. The dependence on parameter γ is investigated by using characteristic function method and analysing spectrum curves which gives qualitative view of the spectrum for fixed ξ1 = m1 / n and ξ2 = m2 / n, where n is discretisation parameter. Some properties of the spectrum curves are formulated and illustrated in figures for various ξ1 and ξ2.
Keywords