PLoS ONE (Jan 2012)

High incidence of multiple viral infections identified in upper respiratory tract infected children under three years of age in Shanghai, China.

  • Guocui Zhang,
  • Yunwen Hu,
  • Hongping Wang,
  • Lu Zhang,
  • Yixi Bao,
  • Xiaoming Zhou

DOI
https://doi.org/10.1371/journal.pone.0044568
Journal volume & issue
Vol. 7, no. 9
p. e44568

Abstract

Read online

BACKGROUND: Upper respiratory tract infection (URTI) is a major reason for hospitalization in childhood. More than 80% of URTIs are viral. Etiological diagnosis of URTIs is important to make correct clinical decisions on treatment methods. However, data for viral spectrum of URTIs are very limited in Shanghai children. METHODS: Nasopharyngeal swabs were collected from a group of 164 children aged below 3 years who were hospitalized due to acute respiratory infection from May 2009 to July 2010 in Shanghai. A VRDAL multiplex PCR for 10 common respiratory viruses was performed on collected specimens compared with the Seeplex® RV15 ACE Detection kit for 15 respiratory viruses. RESULTS: Viruses were detected in 84 (51.2%) patients by VRDAL multiplex PCR, and 8 (4.9%) of cases were mixed infections. Using the Seeplex® RV15 ACE Detection kit, viruses were detected in 129 (78.7%) patients, 49 (29.9%) were co-infected cases. Identified viruses included 37 of human rhinovirus (22.6% of cases), 32 of influenza A virus (19.5%), 30 of parainfluenzavirus-2 (18.3%), 23 of parainfluenzavirus-3 (14.0%), 15 of human enterovirus (9.1%), 14 each of parainfluenzavirus-1, respiratory syncytial virus B and adenovirus (8.5%), 8 of coronavirus 229E/NL63 (4.9%), 6 of human bocavirus (3.7%), 5 each of influenza B virus and respiratory syncytial virus A (3.0%), 3 of parainfluenzavirus-4 (1.8%), 2 of coronavirus OC43/HKU1 (1.2%), and 1 human metapneumovirus (0.6%). CONCLUSIONS: A high frequency of respiratory infections (78.7%) and co-infections (29.9%) was detected in children with acute respiratory infection symptoms in Shanghai. The Seeplex® RV15 ACE detection method was found to be a more reliable high throughput tool than VRDAL method to simultaneously detect multiple respiratory viruses.