Remote Sensing (Aug 2024)

First Release of the Optimal Cloud Analysis Climate Data Record from the EUMETSAT SEVIRI Measurements 2004–2019

  • Alessio Bozzo,
  • Marie Doutriaux-Boucher,
  • John Jackson,
  • Loredana Spezzi,
  • Alessio Lattanzio,
  • Philip D. Watts

DOI
https://doi.org/10.3390/rs16162989
Journal volume & issue
Vol. 16, no. 16
p. 2989

Abstract

Read online

Clouds are key to understanding the atmosphere and climate, and a long series of satellite observations provide invaluable information to study their properties. EUMETSAT has published Release 1 of the Optimal Cloud Analysis (OCA) Climate Data Record (CDR), which provides a homogeneous time series of cloud properties of up to two overlapping layers, together with uncertainties. The OCA product is derived using the 15 min Spinning Enhanced Visible and Infrared Imager (SEVIRI) measurements onboard Meteosat Second Generation (MSG) in geostationary orbit and covers the period from 19 January 2004 until 31 August 2019. This paper presents the validation of the OCA cloud-top pressure (CTP) against independent lidar-based estimates and the quality assessment of the cloud optical thickness (COT) and cloud particle effective radius (CRE) against a combination of products from satellite-based active and passive instruments. The OCA CTP is in good agreement with the CTP sensed by lidar for low thick liquid clouds and substantially below in the case of high ice clouds, in agreement with previous studies. The retrievals of COT and CRE are more reliable when constrained by solar channels and are consistent with other retrievals from passive imagers. The resulting cloud properties are stable and homogeneous over the whole period when compared against similar CDRs from passive instruments. For CTP, the OCA CDR and the near-real-time OCA products are consistent, allowing for the use of OCA near-real time products to extend the CDR beyond August 2019.

Keywords