Pharmaceutics (Jun 2022)

Quaternized Chitosan Thiol Hydrogel-Thickened Nanoemulsion: A Multifunctional Platform for Upgrading the Topical Applications of Virgin Olive Oil

  • Ali M. Nasr,
  • Salama M. Aboelenin,
  • Mohammad Y. Alfaifi,
  • Ali A. Shati,
  • Serag Eldin I. Elbehairi,
  • Reda F. M. Elshaarawy,
  • Nashwa H. Abd Elwahab

DOI
https://doi.org/10.3390/pharmaceutics14071319
Journal volume & issue
Vol. 14, no. 7
p. 1319

Abstract

Read online

(1) Background: Virgin olive oil (VOO) has attracted the attention of many researchers due to its nutritional and medicinal values. However, VOO’s biological applications have been limited due to a lack of precise chemical profiling and approach to increase the physicochemical characteristics, bioactivity, and delivery of its bioactive components; (2) Methods: The current study intended to evaluate the chemical composition of VOO using the GC-MS technique and determine its major components. Furthermore, the effect of incorporating VOO into Tween 80-lecithin nanoemulsion (OONE) and a quaternized trimethyl chitosan-thiol (TMCT) hydrogel-thickened nanoemulsion system (OOHTN) on its physicochemical characteristics and biological potentials will be investigated; (3) Results: The VOO-based NEs’ physicochemical properties (particle size and zeta potential) were steady during storage for four weeks owing to the inclusion of the protective TMCT hydrogel network to OONE. Excessive fine-tuning of olive oil nanoemulsion (OONE) and the TMCT protective network’s persistent positive charge have contributed to the oil’s improved antimicrobial, anti-biofilm, and antioxidant potentials; (4) Conclusions: The Tween 80-lecithin-TMCT nanosystem might provide a unique and multifunctional nanoplatform for efficient topical therapy as well as the transdermal delivery of lipophilic bioactive compounds.

Keywords