Nature Communications (May 2023)

Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures

  • Anna Urciuolo,
  • Giovanni Giuseppe Giobbe,
  • Yixiao Dong,
  • Federica Michielin,
  • Luca Brandolino,
  • Michael Magnussen,
  • Onelia Gagliano,
  • Giulia Selmin,
  • Valentina Scattolini,
  • Paolo Raffa,
  • Paola Caccin,
  • Soichi Shibuya,
  • Dominic Scaglioni,
  • Xuechun Wang,
  • Ju Qu,
  • Marko Nikolic,
  • Marco Montagner,
  • Gabriel L. Galea,
  • Hans Clevers,
  • Monica Giomo,
  • Paolo De Coppi,
  • Nicola Elvassore

DOI
https://doi.org/10.1038/s41467-023-37953-4
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape.