Remote Sensing (Dec 2023)

On-Orbit Calibration Method for Correction Microwave Radiometer of the HY-2 Satellite Constellation

  • Xiaofeng Ma,
  • Mingsen Lin,
  • Jin Zhao,
  • Yongjun Jia,
  • Chengfei Jiang

DOI
https://doi.org/10.3390/rs15245643
Journal volume & issue
Vol. 15, no. 24
p. 5643

Abstract

Read online

The HY-2D satellite was successfully launched in 2022, which marks the first phase of the HY-2 satellite constellation. In order to reduce the deviation of wet path delay (WPD) between different satellites in the HY-2 satellite constellation and increase precision in the correction microwave radiometer (CMR) products, on-orbit calibration must be performed to the brightness temperature (BT) of the CMR in this constellation. This study describes the principle and process of on-orbit calibration for CMR in detail. For the three satellites of the HY-2 satellite constellation, after cross-matching with each other within a limited spatio-temporal range, the HY-2B satellite with sounding on the global ocean is selected to the calibration source, calibrating BT from the CMR of the HY-2C and HY-2D satellites to the BT dimension of the HY-2B satellite CMR. To check on-orbit calibration, a retrieval algorithm is built using atmospheric profile data from ECMWF and BT data, obtained from the CMR of the HY-2B satellite; this is used to calculate the atmospheric water vapor (AWV) and WPD from the HY-2 satellite constellation. After on-orbit calibration to the CMRs of the HY-2 satellite constellation, the deviation between the CMR products of different satellites is significantly reduced by over 20%, and the RMS of WPD for the same type of products from the Jason-3 satellite is less than 1 cm. It may be concluded that on-orbit calibration improves the accuracy of AWV and WPD by normalizing the BT dimension for CMRs of the HY-2 satellite constellation, so this calibration method is effective and credible for enhancing the quality of altimeter products in the HY-2 satellite constellation.

Keywords