Remote Sensing (Jul 2021)

Morphology of Rain Clusters Influencing Rainfall Intensity over Hainan Island

  • Tingting Huang,
  • Chenghui Ding,
  • Weibiao Li,
  • Yilun Chen

DOI
https://doi.org/10.3390/rs13152920
Journal volume & issue
Vol. 13, no. 15
p. 2920

Abstract

Read online

Continuous observations from geostationary satellites can show the morphology of precipitation cloud systems in quasi-real-time, but there are still large deviations in the inversion of precipitation. We used binary-connected area recognition technology to identify meso-β-scale rain clusters over Hainan Island from 1 June 2000 to 31 December 2018, based on Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM data. We defined and statistically analyzed the parameters of rain clusters to reveal the typical morphological and precipitation characteristics of rain clusters, and to explore the relationship between the parameters and rainfall intensity of rain clusters. We found that the area and long axis of rain clusters over land were larger than those over the ocean, and that continental rain clusters were usually square in shape. Rain clusters with a larger area and longer axis were concentrated on the northern side of the mountains on Hainan Island and the intensity of rain was larger on the northern and eastern sides of the mountains. The variation of continental rain clusters over time was more dramatic than the variation of oceanic clusters. The area and long axis of rain clusters was larger between 14:00 and 21:00 from April to September and the long axis of the oceanic rain clusters increased in winter. There were clear positive correlations between the area, long axis and shape of the rain clusters and the maximum rain rate. The area and long axis of continental rain clusters had a higher correlation with the rain rate than those of oceanic clusters. The establishment of a relationship between the morphology of rain clusters and precipitation helps us to understand the laws of precipitation and improve the prediction of precipitation in this region.

Keywords