Improving Efficiency: Automatic Intelligent Weighing System as a Replacement for Manual Pig Weighing
Gaifeng Hou,
Rui Li,
Mingzhou Tian,
Jing Ding,
Xingfu Zhang,
Bin Yang,
Chunyu Chen,
Ruilin Huang,
Yulong Yin
Affiliations
Gaifeng Hou
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Rui Li
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Mingzhou Tian
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Jing Ding
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Xingfu Zhang
College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin 150050, China
Bin Yang
Key Laboratory of Visual Perception and Artificial Intelligence of Hunan Province, College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Chunyu Chen
College of Information and Communication, Harbin Engineering University, Harbin 150001, China
Ruilin Huang
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Yulong Yin
CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
To verify the accuracy of AIWS, we weighed 106 pen growing-finishing pigs’ weights using both the manual and AIWS methods, respectively. Accuracy was evaluated based on the values of MAE, MAPE, and RMSE. In the growth experiment, manual weighing was conducted every two weeks and AIWS predicted weight data was recorded daily, followed by fitting the growth curves. The results showed that MAE, MAPE, and RMSE values for 60 to 120 kg pigs were 3.48 kg, 3.71%, and 4.43 kg, respectively. The correlation coefficient r between the AIWS and manual method was 0.9410, and R2 was 0.8854. The two were extremely significant correlations (p < 0.001). In growth curve fitting, the AIWS method has lower AIC and BIC values than the manual method. The Logistic model by AIWS was the best-fit model. The age and body weight at the inflection point of the best-fit model were 164.46 d and 93.45 kg, respectively. The maximum growth rate was 831.66 g/d. In summary, AIWS can accurately predict pigs’ body weights in actual production and has a better fitting effect on the growth curves of growing-finishing pigs. This study suggested that it was feasible for AIWS to replace manual weighing to measure the weight of 50 to 120 kg live pigs in large-scale farming.