Neurology and Therapy (Aug 2024)

Evaluating the Efficacy of CortexID Quantitative Analysis in Localization of the Epileptogenic Zone in Patients with Temporal Lobe Epilepsy

  • Shuangshuang Li,
  • Kun Guo,
  • Yuanyuan Wang,
  • Dianwei Wu,
  • Yang Wang,
  • Lanlan Feng,
  • Junling Wang,
  • Xiaoli Meng,
  • Lei Ma,
  • Hua He,
  • Fei Kang

DOI
https://doi.org/10.1007/s40120-024-00646-1
Journal volume & issue
Vol. 13, no. 5
pp. 1403 – 1414

Abstract

Read online

Abstract Introduction There remains a critical need for precise localization of the epileptogenic foci in individuals with drug-resistant epilepsy (DRE). 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) imaging can reveal hypometabolic regions during the interval between seizures in patients with epilepsy. However, visual-based qualitative analysis is time-consuming and strongly influenced by physician experience. CortexID Suite is a quantitative analysis software that helps to evaluate PET imaging of the human brain. Therefore, we aimed to evaluate the efficacy of CortexID quantitative analysis in the localization of the epileptogenic zone in patients with temporal lobe epilepsy (TLE). Methods A total of 102 patients with epilepsy who underwent 18F-FDG-PET examinations were included in this retrospective study. The PET visual analysis was interpreted by two nuclear medicine physicians, and the quantitative analysis was performed automatically using CortexID analysis software. The assumed epileptogenic zone was evaluated comprehensively by two skilled neurologists in the preoperative assessment of epilepsy. The accuracy of epileptogenic zone localization in PET visual analysis was compared with that in CortexID quantitative analysis. Results The diagnostic threshold for the difference in the metabolic Z-score between the right and left sides of medial temporal lobe epilepsy (MTLE) was calculated as 0.87, and that for lateral temporal lobe epilepsy (LTLE) was 2.175. In patients with MTLE, the area under the curve (AUC) was 0.922 for PET visual analysis, 0.853 for CortexID quantitative analysis, and 0.971 for the combined diagnosis. In patients with LTLE, the AUC was 0.842 for PET visual analysis, 0.831 for CortexID quantitative analysis, and 0.897 for the combined diagnosis. These results indicate that the diagnostic efficacy of CortexID quantitative analysis is not inferior to PET visual analysis (p > 0.05), while combined analysis significantly increases diagnostic efficacy (p < 0.05). Among the 23 patients who underwent surgery, the sensitivity and specificity of PET visual analysis for localization were 95.4% and 66.7%, and the sensitivity and specificity of CortexID quantitative analysis were 100% and 50%. Conclusion The diagnostic efficacy of CortexID quantitative analysis is comparable to PET visual analysis in the localization of the epileptogenic zone in patients with TLE. CortexID quantitative analysis combined with visual analysis can further improve the accuracy of epileptogenic zone localization.

Keywords