Molecular Therapy: Methods & Clinical Development (Sep 2020)
Design and Testing of Vector-Producing HEK293T Cells Bearing a Genomic Deletion of the SV40 T Antigen Coding Region
Abstract
The use of the human embryonic kidney (HEK) 293T cell line to manufacture vectors for in vivo applications raises safety concerns due to the presence of SV40 T antigen-encoding sequences. We used CRISPR-Cas9 genome editing to remove the SV40 T antigen-encoding sequences from HEK293T cells by transfecting them with a recombinant plasmid expressing Cas9 and two distinct single guide RNAs (sgRNAs) corresponding to the beginning and end of the T antigen coding region. Cell clones lacking T antigen-encoding sequences were identified using PCR. Whole-genome (WG) and targeted locus amplification (TLA) sequencing of the parental HEK293T cell line revealed multiple SV40 T antigen-encoding sequences replacing cellular sequences on chromosome 3. The putative T antigen null clones demonstrated a loss of sequence reads mapping to T antigen-encoding sequences. Western blot analysis of cell extracts prepared from the T antigen null clones confirmed that the SV40 large and small T antigen proteins were absent. Lentiviral vectors produced using the T antigen null clones exhibited titers up to 1.5 × 107 transducing units (TU)/mL, while the titers obtained from the parent HEK293T cell line were up to 4 × 107 TU/mL. The capacity of the T antigen-negative cells to produce high titer adeno-associated virus (AAV) vectors was also evaluated. The results obtained revealed that the lack of T antigen sequences did not impact AAV vector titers.