Aerospace (Sep 2021)

A Gimballed Control Moment Gyroscope Cluster Design for Spacecraft Attitude Control

  • Charalampos Papakonstantinou,
  • Vaios Lappas,
  • Vassilis Kostopoulos

DOI
https://doi.org/10.3390/aerospace8090273
Journal volume & issue
Vol. 8, no. 9
p. 273

Abstract

Read online

This paper addresses the problem of singularity avoidance in a cluster of four Single-Gimbal Control Moment Gyroscopes (SGCMGs) in a pyramid configuration when used for the attitude control of a satellite by introducing a new gimballed control moment gyroscope (GCMG) cluster scheme. Four SGCMGs were used in a pyramid configuration, along with an additional small and simple stepper motor that was used to gimbal the full cluster around its vertical (z) axis. Contrary to the use of four variable-speed control moment gyroscopes (VSCMGs), where eight degrees of freedom are available for singularity avoidance, the proposed GCMG design uses only five degrees of freedom (DoFs), and a modified steering law was designed for the new setup. The proposed design offers the advantages of SGCMGs, such as a low weight, size, and reduced complexity, with the additional benefit of overcoming the internal elliptic singularities, which create a minor attitude error. A comparison with the four-VSCMG cluster was conducted through numerical simulations, and the results indicated that the GCMG design was considerably more efficient in terms of power while achieving a better gimbal configuration at the end of the simulation, which is essential when it is desired for different manoeuvres to be consecutively executed. Additionally, for a nano-satellite of a few kilograms, the results prove that it is feasible to manufacture the GCMG concept by using affordable and lightweight commercial off-the-shelf (COTS) stepper motors.

Keywords