Agronomy (Feb 2021)

Assessing the Effects of Irrigation Water Salinity on Two Ornamental Crops by Remote Spectral Imaging

  • Xinyang Yu,
  • Younggu Her,
  • Anjin Chang,
  • Jung-Hun Song,
  • E. Vanessa Campoverde,
  • Bruce Schaffer

DOI
https://doi.org/10.3390/agronomy11020375
Journal volume & issue
Vol. 11, no. 2
p. 375

Abstract

Read online

Salinity is one of the most common and critical environmental factors that limit plant growth and reduce crop yield. The aquifers, the primary sources of irrigation water, of south Florida are shallow and highly permeable, which makes agriculture vulnerable to projected sea level rise and saltwater intrusion. This study evaluated the growth responses of two ornamental nursery crops to the different salinity levels of irrigation water to help develop saltwater intrusion mitigation plans for the improved sustainability of the horticultural industry in south Florida. Two nursery crops, Hibiscus rosa-sinensis and Mandevilla splendens, were treated with irrigation water that had seven different salinity levels from 0.5 (control) to 10.0 dS/m in the experiment. Crop height was measured weekly, and growth was monitored daily using the normalized difference vegetation index (NDVI) values derived from multispectral images collected using affordable sensors. The results show that the growth of H. rosa-sinensis and M.splendens was significantly inhibited when the salinity concentrations of irrigation water increased to 7.0 and 4.0 dS/m, for each crop, respectively. No significant differences were found between the NDVI values and plant growth variables of both H. rosa-sinensis and M.splendens treated with the different irrigation water salinity levels less than 2.0 dS/m. This study identified the salinity levels that could reduce the growth of the two nursery crops and demonstrated that the current level of irrigation water salinity (0.5 dS/m) would not have significant adverse effects on the growth of these crops in south Florida.

Keywords