Remote Sensing (Mar 2018)

Climate and Spring Phenology Effects on Autumn Phenology in the Greater Khingan Mountains, Northeastern China

  • Yuanyuan Fu,
  • Hong S. He,
  • Jianjun Zhao,
  • David R. Larsen,
  • Hongyan Zhang,
  • Michael G. Sunde,
  • Shengwu Duan

DOI
https://doi.org/10.3390/rs10030449
Journal volume & issue
Vol. 10, no. 3
p. 449

Abstract

Read online

Vegetation phenology plays a key role in terrestrial ecosystem nutrient and carbon cycles and is sensitive to global climate change. Compared with spring phenology, which has been well studied, autumn phenology is still poorly understood. In this study, we estimated the date of the end of the growing season (EOS) across the Greater Khingan Mountains, China, from 1982 to 2015 based on the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index third-generation (NDVI3g) dataset. The temporal correlations between EOS and climatic factors (e.g., preseason temperature, preseason precipitation), as well as the correlation between autumn and spring phenology, were investigated using partial correlation analysis. Results showed that more than 94% of the pixels in the Greater Khingan Mountains exhibited a delayed EOS trend, with an average rate of 0.23 days/y. Increased preseason temperature resulted in earlier EOS in most of our study area, except for the semi-arid grassland region in the south, where preseason warming generally delayed EOS. Similarly, EOS in most of the mountain deciduous coniferous forest, forest grassland, and mountain grassland forest regions was earlier associated with increased preseason precipitation, but for the semi-arid grassland region, increased precipitation during the preseason mainly led to delayed EOS. However, the effect of preseason precipitation on EOS in most of the Greater Khingan Mountains was stronger than that of preseason temperature. In addition to the climatic effects on EOS, we also found an influence of spring phenology on EOS. An earlier SOS led to a delayed EOS in most of the study area, while in the southern of mountain deciduous coniferous forest region and northern of semi-arid grassland region, an earlier SOS was often followed by an earlier EOS. These findings suggest that both climatic factors and spring phenology should be incorporated into autumn phenology models in order to improve prediction accuracy under present and future climate change scenarios.

Keywords